Serveur d'exploration Cyberinfrastructure

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure

Identifieur interne : 000811 ( Main/Exploration ); précédent : 000810; suivant : 000812

Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure

Auteurs : Joohyun Kim [États-Unis] ; Wei Huang [États-Unis] ; Sharath Maddineni [États-Unis] ; Fareed Aboul-Ela [États-Unis] ; Shantenu Jha [États-Unis]

Source :

RBID : ISTEX:C06975D57FCA7300C0DE70650D16AFE0922E3B1C

Abstract

We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base‐pair distances between two configurations. We identify structural features that can be utilized for RNA gene finding. Characterization of the EL through BE sampling of secondary structures is computationally demanding and has multiple heterogeneous stages. We develop the Distributed Adaptive Runtime Environment to effectively address the computational requirements. Distributed Adaptive Runtime Environment is built upon an extensible and interoperable pilot‐job and supports the concurrent execution of a broad range of task sizes across a range of infrastructure. It is used to investigate two RNA systems of different sizes, S‐adenosyl methionine (SAM) binding RNA sequences known as SAM‐I riboswitches, and the S gene of the bovine corona virus RNA genome. We demonstrate how the implementation lowers the total time to solution for increases in RNA length, the number of sequences investigated, and the number of sampled structures. The distributions of energies and base‐pair distances reveal variations in folding dynamics and pathways among the SAM riboswitch sequences. Our results for BCoV RNA genome sequences also indicate sensitivity of folding to coding‐neutral variations in sequence. We search for a characteristic motif from within the SAM‐I consensus structure – a four‐way junction, among BE sampled structures for all 2910 SAM‐I sequences identified from Rfam (the curated ncRNA family database). We find that BE sampling provides insight into the variations in conformational distribution among sequences of the same ncRNA family. Therefore, BE sampling of secondary structures is a viable pre‐processing or post‐processing tool to complement comparative sequence analysis. The understanding gained shows how appropriately designed cyberinfrastructure can provide new insight into RNA folding and structure formation. Copyright © 2011 John Wiley & Sons, Ltd.

Url:
DOI: 10.1002/cpe.1796


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure</title>
<author>
<name sortKey="Kim, Joohyun" sort="Kim, Joohyun" uniqKey="Kim J" first="Joohyun" last="Kim">Joohyun Kim</name>
</author>
<author>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
</author>
<author>
<name sortKey="Maddineni, Sharath" sort="Maddineni, Sharath" uniqKey="Maddineni S" first="Sharath" last="Maddineni">Sharath Maddineni</name>
</author>
<author>
<name sortKey="Aboul La, Fareed" sort="Aboul La, Fareed" uniqKey="Aboul La F" first="Fareed" last="Aboul-Ela">Fareed Aboul-Ela</name>
</author>
<author>
<name sortKey="Jha, Shantenu" sort="Jha, Shantenu" uniqKey="Jha S" first="Shantenu" last="Jha">Shantenu Jha</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:C06975D57FCA7300C0DE70650D16AFE0922E3B1C</idno>
<date when="2011" year="2011">2011</date>
<idno type="doi">10.1002/cpe.1796</idno>
<idno type="url">https://api.istex.fr/document/C06975D57FCA7300C0DE70650D16AFE0922E3B1C/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">000181</idno>
<idno type="wicri:Area/Istex/Curation">000181</idno>
<idno type="wicri:Area/Istex/Checkpoint">000231</idno>
<idno type="wicri:doubleKey">1532-0626:2011:Kim J:energy:landscape:analysis</idno>
<idno type="wicri:Area/Main/Merge">000813</idno>
<idno type="wicri:Area/Main/Curation">000811</idno>
<idno type="wicri:Area/Main/Exploration">000811</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main" xml:lang="en">Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure</title>
<author>
<name sortKey="Kim, Joohyun" sort="Kim, Joohyun" uniqKey="Kim J" first="Joohyun" last="Kim">Joohyun Kim</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computation & Technology, Louisiana State University, LA, 70803, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
<affiliation>
<wicri:noCountry code="subField">E‐mail:</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
<author>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, LA, 70803, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Maddineni, Sharath" sort="Maddineni, Sharath" uniqKey="Maddineni S" first="Sharath" last="Maddineni">Sharath Maddineni</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computation & Technology, Louisiana State University, LA, 70803, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Aboul La, Fareed" sort="Aboul La, Fareed" uniqKey="Aboul La F" first="Fareed" last="Aboul-Ela">Fareed Aboul-Ela</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Biological Sciences, Louisiana State University, LA, 70803, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jha, Shantenu" sort="Jha, Shantenu" uniqKey="Jha S" first="Shantenu" last="Jha">Shantenu Jha</name>
<affiliation wicri:level="1">
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Center for Computation & Technology, Louisiana State University, LA, 70803, Baton Rouge</wicri:regionArea>
<wicri:noRegion>Baton Rouge</wicri:noRegion>
</affiliation>
<affiliation>
<wicri:noCountry code="subField">E‐mail:</wicri:noCountry>
</affiliation>
<affiliation wicri:level="1">
<country wicri:rule="url">États-Unis</country>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j">Concurrency and Computation: Practice and Experience</title>
<title level="j" type="abbrev">Concurrency Computat.: Pract. Exper.</title>
<idno type="ISSN">1532-0626</idno>
<idno type="eISSN">1532-0634</idno>
<imprint>
<publisher>John Wiley & Sons, Ltd</publisher>
<pubPlace>Chichester, UK</pubPlace>
<date type="published" when="2011-12-10">2011-12-10</date>
<biblScope unit="volume">23</biblScope>
<biblScope unit="issue">17</biblScope>
<biblScope unit="page" from="2292">2292</biblScope>
<biblScope unit="page" to="2304">2304</biblScope>
</imprint>
<idno type="ISSN">1532-0626</idno>
</series>
<idno type="istex">C06975D57FCA7300C0DE70650D16AFE0922E3B1C</idno>
<idno type="DOI">10.1002/cpe.1796</idno>
<idno type="ArticleID">CPE1796</idno>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">1532-0626</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass></textClass>
<langUsage>
<language ident="en">en</language>
</langUsage>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">We investigate the folding energy landscape for a given RNA sequence through Boltzmann ensemble (BE) sampling of RNA secondary structures. The ensemble of sampled structures is used to derive distributions of energies and base‐pair distances between two configurations. We identify structural features that can be utilized for RNA gene finding. Characterization of the EL through BE sampling of secondary structures is computationally demanding and has multiple heterogeneous stages. We develop the Distributed Adaptive Runtime Environment to effectively address the computational requirements. Distributed Adaptive Runtime Environment is built upon an extensible and interoperable pilot‐job and supports the concurrent execution of a broad range of task sizes across a range of infrastructure. It is used to investigate two RNA systems of different sizes, S‐adenosyl methionine (SAM) binding RNA sequences known as SAM‐I riboswitches, and the S gene of the bovine corona virus RNA genome. We demonstrate how the implementation lowers the total time to solution for increases in RNA length, the number of sequences investigated, and the number of sampled structures. The distributions of energies and base‐pair distances reveal variations in folding dynamics and pathways among the SAM riboswitch sequences. Our results for BCoV RNA genome sequences also indicate sensitivity of folding to coding‐neutral variations in sequence. We search for a characteristic motif from within the SAM‐I consensus structure – a four‐way junction, among BE sampled structures for all 2910 SAM‐I sequences identified from Rfam (the curated ncRNA family database). We find that BE sampling provides insight into the variations in conformational distribution among sequences of the same ncRNA family. Therefore, BE sampling of secondary structures is a viable pre‐processing or post‐processing tool to complement comparative sequence analysis. The understanding gained shows how appropriately designed cyberinfrastructure can provide new insight into RNA folding and structure formation. Copyright © 2011 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<country name="États-Unis">
<noRegion>
<name sortKey="Kim, Joohyun" sort="Kim, Joohyun" uniqKey="Kim J" first="Joohyun" last="Kim">Joohyun Kim</name>
</noRegion>
<name sortKey="Aboul La, Fareed" sort="Aboul La, Fareed" uniqKey="Aboul La F" first="Fareed" last="Aboul-Ela">Fareed Aboul-Ela</name>
<name sortKey="Huang, Wei" sort="Huang, Wei" uniqKey="Huang W" first="Wei" last="Huang">Wei Huang</name>
<name sortKey="Jha, Shantenu" sort="Jha, Shantenu" uniqKey="Jha S" first="Shantenu" last="Jha">Shantenu Jha</name>
<name sortKey="Jha, Shantenu" sort="Jha, Shantenu" uniqKey="Jha S" first="Shantenu" last="Jha">Shantenu Jha</name>
<name sortKey="Kim, Joohyun" sort="Kim, Joohyun" uniqKey="Kim J" first="Joohyun" last="Kim">Joohyun Kim</name>
<name sortKey="Maddineni, Sharath" sort="Maddineni, Sharath" uniqKey="Maddineni S" first="Sharath" last="Maddineni">Sharath Maddineni</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Ticri/CIDE/explor/CyberinfraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000811 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000811 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Ticri/CIDE
   |area=    CyberinfraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:C06975D57FCA7300C0DE70650D16AFE0922E3B1C
   |texte=   Energy landscape analysis for regulatory RNA finding using scalable distributed cyberinfrastructure
}}

Wicri

This area was generated with Dilib version V0.6.25.
Data generation: Thu Oct 27 09:30:58 2016. Site generation: Sun Mar 10 23:08:40 2024